Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone.

نویسندگان

  • N Tamamaki
  • K E Fujimori
  • R Takauji
چکیده

Neuroblasts produced in the ventricular zone of the neocortex migrate radially and form the cortical plate, settling in an inside-out order. It is also well known that the tangential cell migration is not negligible in the embryonic neocortex. To have a better understanding of the tangential cell migration in the cortex, we disturbed the migration by making a cut in the neocortex, and we labeled the migrating cells with 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) in vivo and in vitro. We also determined the birth dates of the cells. Disturbance of tangential cell migration caused an accumulation and disappearance of microtubule-associated protein 2 immunoreactive (MAP2-IR) cells on the ventral and dorsal side of the cut, respectively, which indicated that most of the MAP2-IR cells in the intermediate zone (IZ) were migrating toward the dorsal cortex. The DiI injection study in vivo confirmed the tendency of the direction of cell migration and suggested the origin of the cells to be in the lateral ganglionic eminence (LGE). DiI injection into the LGE in vitro confirmed that the LGE cells cross the corticostriatal boundary and enter the IZ of the neocortex. The migrating cells acquired multipolar shape in the IZ of the dorsal cortex and seemed to reside there. A 5-bromo-deoxyuridine incorporation study revealed that the migrating MAP2-IR cells in the IZ were early-generated neurons. We concluded that the majority of tangentially migrating cells were generated in the LGE and identified as a distinct population that was assumed not to have joined the cortical plate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell migration in the rat embryonic neocortex.

Three-dimensional reconstructions of the normal rat embryonic (E) neocortex on days E15, E17, E19, and E21, using Skandha (software designed by J. Prothero, University of Washington, Seattle), show that the neocortical ventricular zone shrinks rapidly in the medial direction during cortical morphogenesis. [3H]thymidine autoradiography indicates that the shrinkage of the ventricular zone occurs ...

متن کامل

Involvement of filamin A and filamin A-interacting protein (FILIP) in controlling the start and cell shape of radially migrating cortical neurons.

Precisely regulated radial cell migration out of the ventricular zone is essential for corticogenesis. However, molecular mechanisms controlling the start of migration and the dynamics of migrating cell shape remain elusive. Here, we show novel mechanisms that can tether ventricular zone cells and control migrating cell shape. The novel protein Filamin A-interacting protein (FILIP) interacts wi...

متن کامل

Tangential migration and proliferation of intermediate progenitors of GABAergic neurons in the mouse telencephalon.

In the embryonic neocortex, neuronal precursors are generated in the ventricular zone (VZ) and accumulate in the cortical plate. Recently, the subventricular zone (SVZ) of the embryonic neocortex was recognized as an additional neurogenic site for both principal excitatory neurons and GABAergic inhibitory neurons. To gain insight into the neurogenesis of GABAergic neurons in the SVZ, we investi...

متن کامل

Polarized increase of calcium and nucleokinesis in tangentially migrating neurons.

Cortical interneurons originate from the ganglionic eminences and reach their final position in the cortex via tangential migratory routes. The mechanisms of this migration are poorly understood. Here we have performed confocal time-lapse analysis of cell movement in the intermediate zone of embryonic mouse cortical slices in order to directly visualize their mode of migration. Tangentially mig...

متن کامل

Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex.

Most GABAergic interneurons originate from the basal forebrain and migrate tangentially into the cortex. The migratory pathways and mode of interneuron migration within the developing cerebral cortex, however, previously was largely unknown. Time-lapse imaging and in vivo labelling with glutamate decarboxylase (GAD)67-green fluorescence protein (GFP) knock-in embryonic mice with expression of G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 21  شماره 

صفحات  -

تاریخ انتشار 1997